Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081231

RESUMO

Modern instrumentation development often involves the incorporation of many dissimilar hardware peripherals into a single unified instrument. The increasing availability of modular hardware has brought greater instrument complexity to small research groups. This complexity stretches the capability of traditional, monolithic orchestration software. In many cases, a lack of software flexibility leads creative researchers to feel frustrated, unable to perform experiments they envision. Herein, we describe Yet Another acQuisition (yaq), a software project defining a new standardized way of communicating with diverse hardware peripherals. yaq encourages a highly modular approach to experimental software development that is well suited to address the experimental flexibility needs of complex instruments. yaq is designed to overcome hardware communication barriers that challenge typical experimental software. A large number of hardware peripherals are already supported, with tooling available to expand support. The yaq standard enables collaboration among multiple research groups, increasing code quality while lowering development effort.

2.
J Am Soc Mass Spectrom ; 32(12): 2821-2826, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34730958

RESUMO

In this work, we present the Wisconsin Oscillator, a small, inexpensive, low-power circuit for powering ion-guiding devices such as multipole ion guides, ion funnels, active ion-mobility devices, and non-mass-selective ion traps. The circuit can be constructed for under $30 and produces two antiphase RF waveforms of up to 250 Vp-p in the high kilohertz to low megahertz range while drawing less than 1 W of power. The output amplitude is determined by a 0-6.5 VDC drive voltage, and voltage amplification is achieved using a resonant LC circuit, negating the need for a large RF transformer. The Wisconsin Oscillator automatically oscillates with maximum amplitude at the resonant frequency defined by the onboard capacitors, inductors, and the capacitive load of the ion-guiding device. We show that our circuit can replace larger and more expensive RF power supplies without degradation of the ion signal and expect this circuit to be of use in miniature and portable mass spectrometers as well as in home-built systems utilizing ion-guiding devices.

3.
Rev Sci Instrum ; 92(4): 044103, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243469

RESUMO

The design of a headspace pressure-monitoring reactor for measuring the uptake/evolution of gas in gas-liquid chemical transformations is described. The reactor features a parallel setup with ten-reactor cells, each featuring a low working volume of 0.2-2 ml, a pressure capacity from 0 to 150 PSIa, and a high sensitivity pressure transducer. The reactor cells are composed of commercially available disposable thick-walled glassware and compact monolithic weld assemblies. The software interface controls the reactor temperature while monitoring pressure in each of the parallel reactor cells. Reactions are easy to set up and yield high-density gas uptake/evolution data. This instrument is especially well suited to acquire quantitative time-course data for reactions with small quantities of gas consumed or produced.

4.
Org Lett ; 23(13): 5277-5281, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34161103

RESUMO

Adoption of commercial photoreactors as standards for photocatalysis research could be limited by high cost. We report the development of the Wisconsin Photoreactor Platform (WPP), an open-source photoreactor architecture potentially suitable for general adoption. The WPP integrates inexpensive commercial components and common high-intensity LEDs in a 3D-printed enclosure. Dimensions and features of WPP reactors can be readily varied and configurations easily reproduced. WPP performance is evaluated using literature transformations driven by light of disparate wavelengths.


Assuntos
Fotoquímica , Catálise , Luz , Estrutura Molecular
5.
Front Plant Sci ; 11: 1015, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754178

RESUMO

Forests, estimated to contain two thirds of the world's biodiversity, face existential threats due to illegal logging and land conversion. Efforts to combat illegal logging and to support sustainable value chains are hampered by a critical lack of affordable and scalable technologies for field-level inspection of wood and wood products. To meet this need we present the XyloTron, a complete, self-contained, multi-illumination, field-deployable, open-source platform for field imaging and identification of forest products at the macroscopic scale. The XyloTron platform integrates an imaging system built with off-the-shelf components, flexible illumination options with visible and UV light sources, software for camera control, and deep learning models for identification. We demonstrate the capabilities of the XyloTron platform with example applications for automatic wood and charcoal identification using visible light and human-mediated wood identification based on ultra-violet illumination and discuss applications in field imaging, metrology, and material characterization of other substrates.

6.
J Phys Chem A ; 122(46): 9031-9042, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30365322

RESUMO

Triply resonant sum frequency (TRSF) spectroscopy is a fully coherent mixed vibrational-electronic spectroscopic technique that is ideally suited for probing the vibrational-electronic couplings that become important in driving reactions. We have used cyanocobalamin (CNCbl) and deuterated aquacobalamin (D2OCbl+) as model systems for demonstrating the feasibility of using the selectivity of coherent multidimensional spectroscopy to resolve electronic states within the broad absorption spectra of transition metal complexes and identify the nature of the vibrational and electronic state couplings. We resolve three short and long axis vibrational modes in the vibrationally congested 1400-1750 cm-1 region that are individually coupled to different electronic states in the 18 000-21 000 cm-1 region but have minimal coupling to each other. Double resonance with the individual vibrational fundamentals and their overtones selectively enhances the corresponding electronic resonances and resolves features within the broad absorption spectrum. This work demonstrates the feasibility of identifying coupling between different pairs of vibrational states with different electronic states that together form the reaction coordinate surface of transition metal enzymes.

7.
Nano Lett ; 18(3): 1600-1607, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29378412

RESUMO

PEDOT: PSS, a transparent electrically conductive polymer, finds widespread use in electronic devices. While empirical efforts have increased conductivity, a detailed understanding of the coupled electronic and morphological landscapes in PEDOT:PSS has lagged due to substantial structural heterogeneity on multiple length-scales. We use an optical microresonator-based absorption spectrometer to perform single-particle measurements, providing a bottom-up examination of electronic structure and morphology ranging from single PEDOT:PSS polymers to nascent films. Using single-particle spectroscopy with complementary theoretical calculations and ultrafast spectroscopy, we demonstrate that PEDOT:PSS displays bulk-like optical response even in single polymers. We find highly ordered PEDOT assemblies with long-range ordering mediated by the insulating PSS matrix and reveal a preferential surface orientation of PEDOT nanocrystallites absent in bulk films with implications for interfacial electronic communication. Our single-particle perspective provides a unique window into the microscopic structure and electronic properties of PEDOT:PSS.

8.
J Chem Phys ; 147(8): 084202, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28863536

RESUMO

Ultrafast spectroscopy is often collected in the mixed frequency/time domain, where pulse durations are similar to system dephasing times. In these experiments, expectations derived from the familiar driven and impulsive limits are not valid. This work simulates the mixed-domain four-wave mixing response of a model system to develop expectations for this more complex field-matter interaction. We explore frequency and delay axes. We show that these line shapes are exquisitely sensitive to excitation pulse widths and delays. Near pulse overlap, the excitation pulses induce correlations that resemble signatures of dynamic inhomogeneity. We describe these line shapes using an intuitive picture that connects to familiar field-matter expressions. We develop strategies for distinguishing pulse-induced correlations from true system inhomogeneity. These simulations provide a foundation for interpretation of ultrafast experiments in the mixed domain.

9.
ACS Nano ; 9(12): 12146-57, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26525496

RESUMO

We report the first coherent multidimensional spectroscopy study of a MoS2 film. A four-layer sample of MoS2 was synthesized on a silica substrate by a simplified sulfidation reaction and characterized by absorption and Raman spectroscopy, atomic force microscopy, and transmission electron microscopy. State-selective coherent multidimensional spectroscopy (CMDS) on the as-prepared MoS2 film resolved the dynamics of a series of diagonal and cross-peak features involving the spin-orbit split A and B excitonic states and continuum states. The spectra are characterized by striped features that are similar to those observed in CMDS studies of quantum wells where the continuum states contribute strongly to the initial excitation of both the diagonal and cross-peak features, while the A and B excitonic states contributed strongly to the final output signal. The strong contribution from the continuum states to the initial excitation shows that the continuum states are coupled to the A and B excitonic states and that fast intraband relaxation is occurring on a sub-70 fs time scale. A comparison of the CMDS excitation signal and the absorption spectrum shows that the relative importance of the continuum states is determined primarily by their absorption strength. Diagonal and cross-peak features decay with a 680 fs time constant characteristic of exciton recombination and/or trapping. The short time dynamics are complicated by coherent and partially coherent pathways that become important when the excitation pulses are temporally overlapped. In this region, the coherent dynamics create diagonal features involving both the excitonic states and continuum states, while the partially coherent pathways contribute to cross-peak features.

10.
J Am Chem Soc ; 137(17): 5810-8, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25871732

RESUMO

Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage that enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices.

11.
J Am Chem Soc ; 136(49): 17163-79, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25399991

RESUMO

Iron pyrite (FeS2) is considered a promising earth-abundant semiconductor for solar energy conversion with the potential to achieve terawatt-scale deployment. However, despite extensive efforts and progress, the solar conversion efficiency of iron pyrite remains below 3%, primarily due to a low open circuit voltage (VOC). Here we report a comprehensive investigation on {100}-faceted n-type iron pyrite single crystals to understand its puzzling low VOC. We utilized electrical transport, optical spectroscopy, surface photovoltage, photoelectrochemical measurements in aqueous and acetonitrile electrolytes, UV and X-ray photoelectron spectroscopy, and Kelvin force microscopy to characterize the bulk and surface defect states and their influence on the semiconducting properties and solar conversion efficiency of iron pyrite single crystals. These insights were used to develop a circuit model analysis for the electrochemical impedance spectroscopy that allowed a complete characterization of the bulk and surface defect states and the construction of a detailed energy band diagram for iron pyrite crystals. A holistic evaluation revealed that the high-density of intrinsic surface states cannot satisfactorily explain the low photovoltage; instead, the ionization of high-density bulk deep donor states, likely resulting from bulk sulfur vacancies, creates a nonconstant charge distribution and a very narrow surface space charge region that limits the total barrier height, thus satisfactorily explaining the limited photovoltage and poor photoconversion efficiency of iron pyrite single crystals. These findings lead to suggestions to improve single crystal pyrite and nanocrystalline or polycrystalline pyrite films for successful solar applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...